Int. J. Solids Structures, 1971, Vol. 7, pp. | to 4. Pergamon Press. Printed in Great Britain

THICKNESS-TWIST VIBRATIONS OF A QUARTZ STRIP

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York, N. Y.

Abstract—An exact solution of the three-dimensional equations of elasticity has been found for the thickness-
twist modes of vibration of a rotated-Y-cut quartz plate with a pair of parallel, free edges. The solution has a
simple form: made possible by relaxing the condition that the edge-planes be perpendicular to the main faces
of the plate. For the AT-cut, the edges are off perpendicular by about five degrees.

INTRODUCTION

IN A previous paper [1], the solution was given for the thickness-twist modes of vibration
of infinite, rotated-Y-cut, quartz crystal plates. In the present paper, the solution is recast
in a different form [2] and extended to accommodate similar plates of finite width.

A rotated-Y-cut plate is one whose middle plane contains a digonal axis of elastic
symmetry of the quartz crystal and whose normal makes an angle (35° 15’ for the widely
used AT-cut) with the trigonal axis [3]. In an isotropic plate, the thickness-twist modes
of vibration are those in which the displacement direction is parallel to the middle plane
of the plate and the wave normal is perpendicular to the displacement. In infinite, rotated-
Y-cut quartz plates, analogous modes are possible {1] if the displacement direction is
parallel to the digonal axis in the plane of the plate. Again in the isotropic plate, simple
reflections of thickness-twist waves occur at free, plane boundaries of the plate parallel
to the displacement direction and perpendicular to the middle plane. The same is not
true in the quartz plate: with the result that the thickness-twist vibrations of a quartz
strip, with a rectangular cross-section perpendicular to the digonal axis, are not expressible
in terms of a finite number of elementary functions. The mode shape, if it were found,
would comprise an infinite number of elementary shapes; and those with the longer
wave lengths would be designated as ‘“‘unwanted modes’ or “‘spurious modes’ which cause
difficulties in crystal filter applications in electric circuits.

In the present paper, it is shown that, if the free, plane boundaries of the strip are
maintained parallel to the digonal axis but cut slightly off normal to the middle plane
(about 5° off normal for the AT-cut) simple reflections occur, a simple, closed solution is
obtained and modes with simple shapes and well spaced frequencies result.

SOLUTION
If the x-axis is a digonal axis and the y-axis is normal to the middle plane of the plate,
the stress—strain relations for the rotated-Y-cuts of quartz are [3]
T, = ¢1181+¢128,+€1353+ €148y, T, = 2181+ €255, +€2383+ 248,
Ty = €315, +¢3,5,+ 3383+ 3484, Ty = c41S1+€4282+ 4383+ CasSas (1)
Ts = ¢5585+Cs6565 Ts = 6555+ Co6565
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where c,, = ¢,, and the strains, S, are related to the displacements u, v, w, according to
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The stresses must satisfy the equations of motion:
0T, 0Ty OT; u 0T, 0T, 0T, &% 6T5 oT, 0T, 0*w

Ty ta far wtata far ey e fa VY
We require a steady state solution, of these equations, of the form
u = Uy, z) &', v=w=0, )]

for a strip of finite thickness in the y-direction and of finite width in the z-direction—with
all four boundaries free of traction.
Substitution of (4) in (1)}3) reduces the latter to
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with the exponential factor omitted.
Now, the four functions [2]

U= Asmnycos((——y z)+Bsm11ysmC(——y z)

C66

(8)
+ C cos ny cos C(——y z) + D cos iy sin C(—;y z)

are solutions of (7) if

pa’ = coeh +755(%, )
where
Vss = 55— C36/Co6- (10)
For a plate of finite thickness, say 2k, we require

Blyzin = Tidy=in = Tely=1a = 0; (11)

and these boundary conditions are satisfied by (8) if
2nh = mn, (12)
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where m is an odd integer for solutions 4 and B and an even integer (including zero—
which corresponds to a face-shear mode) for solutions C and D.
For traction-free boundaries at z = + ¢, we should require

T3]z=:tc = T4]z=ic = T;]z=:ta =0. (13)

The first two of these are satisfied identically, but the third cannot be satisfied by functions
as simple as (8). An infinite series of such functions would be required. However, consider
a rotation of coordinate axes, through an angle « about the x-axis, according to the scheme

of direction cosines
X y z

x 1 0 0

(14)
y 0 cosa sina

!

zZ 0 —siha cosa

With (5), the components of stress, referred to the rotated axes, are given in terms of the
original components by

1=T,=T,=T,=0, Ts = T cos a— Ty sin a, Ty = Tssina+ Tgcos a;
" (15)

and, for traction-free boundaries at z’ = + ¢ cos «, as shown in Fig. 1, we require

Tl?a]z'=:tccosa = ] =tccosa — ,5]z'=iccosa =0. (16)
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Fi1G. 1. Rotated axes and cross-section of quartz strip.

Now, T and T, are identically zero whereas

T -An(c56cosoc—c66s1na)cosr1ycosC(—y z)+ACysscosasmnysmC(—y z)

+ Br(csg COS 00— C4 Sin ) COS Ny Sin {

ﬁy-—z) — Blyss cos asin 7y cos C(ﬁy—z)
Coo Ce6

(17

. . ¢ .
— Cnlcse €OS o~ C4¢ 8iN &) 5in Y COS C(ciy-ﬂ) + C{yss cos a cos ny sin C(Eﬁy —z)
66 66
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In (17), set
o = arctan(Cse/Ces) (18)
and note that (cs¢/ce)y—z = —2'/cos a. Then (17) reduces to
T = Alyss cos asinny sin({z'/cos o)~ B(y s cos o sin 1y cos({z'/cos a) 19)
+ C{ys5 cos a cos ny sin({z'/cos a) — D{y 55 cos a cos ny cos({z'/cos a).
Hence, it is apparent that T5 =0 on 2’ = +ccosa if
e = nn, (20)

where n is an even integer (including zero—which gives simple thickness-shear modes)
for solutions A and C, and an odd integer for solutions B and D.
Upon substituting (12) and (20) in (8) and (9), we find the required simple solutions:

. mn nric . mn . 7w
U=4 sm——ycos«w(—s—(’y—z) +Bsin Y sm«-g(—c—s—‘ly—z)

2h 2clc 2h 2cic
66 66 (21)
mny  nnfcse mry .| nmrfcsq
—=cos—| =y~ D cos——sin—{—y—z].
+C cos h coszc(c“y z)+ cos— smzc(c“y z)
with circular frequencies
o = M [ces\ [} | vssn®h N )
T2kl p Costc?

and m and n odd or even integers, for solutions A, B, C, D, according to
A:modd, neven;
B:modd, nodd:
C: meven, neven;
D: meven, n odd.

For the AT-cut of quartz cs¢ = 2:53 and c¢g¢ = 29-01, in units of 10'° dyn/cm?, as
calculated from Bechmann’s values [4] of the principal constants of quartz. Hence, by (18),
« is approximately 5° for the AT-cut. Thus, only a slight inclination of the edge-cuts is
required to reduce the undesirable, complicated mode-shapes to simple ones.
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AbBcrpaxt—IIpHBOANTCH TOYHOE PELUCHHE IS TPEXMEPHBIX YDABHEHHHE YNPYIOCTH I CIIY4af KDY THIBHBIX
1o ToMmuAHe BHAOOB KomeGaHuil Bpaiaroiielica MIACTHHKH M3 Kpapua Y-cpesa ¢ napoit napannenbHBbIX,
¢BOOONHBIX KPACB.

Pemenune uMeeT PocTyro GOPMY H NAET BOIMOKHOCTh 0CNa6UTD YCIIOBHA TAK, YTO KpaeBbi¢ IIJIOCKOCTH
MOryT GBITE TIEPNEIMKYASIPHEIMK K IJIABHBIM NoBepXHocTAM miacTHiku. dns keapma A'T-cpesa, kpas
OTOANAIOTCH OT NEPNEAUKYIATHOCTH OKONO MATH CTENeHeiH



